3. Complex Numbers


1. 
Express the following in the standard form a + ib. 

  • Solution:
    = = =
                    =
    = =
                    = 1 + 3i


 

2. 
Express the following in the standard form a + ib. 

  • Solution:
    = =

                     = =
                     = = - i


 

3. 
Express the following in the standard form a + ib. 
(-3 + i) (4 – 2i)

  • Solution:
    (-3 + i) (4 – 2i) = -12 + 4i + 6i – 2i2
                                         
    = -12 + 10i + 2 
                                 = -10 + 10i


 

4. 
Express the following in the standard form a + ib.

  • Solution:
    =

                           = since i2 = -1 and i3 = -i

                           = = 1


 

5. 
Find the real and imaginary parts of the following complex numbers.

  • Solution:
    = = = =

    R.P. = and I.P. = -


 

6. 
Find the real and imaginary parts of the following complex numbers.

  • Solution:
    =
                           = = = -
    RP = IP =


 

7. 
Find the real and imaginary parts of the following complex numbers. 
(2 + i) ( 3 – 2i)

  • Solution:
    (2 + i) ( 3 – 2i) = 6 + 3i – 4i – 2i2
                                   
    = 6 – i + 2 = 8 – i
    RP = 8, IP = -1


 

8. 
Find the least positive integer n such that

  • Solution:







    (i)n = 1
    This is possible for n = 4, 8, 12, ………………….

    The least positive integer n for this to be true = 4.


 

9. 
Find the real values of x and y for which the following equations are satisfied. 
(1 – i)x + (1 + i)y = 1 – 3i

  • Solution:
    (1 – i)x + (1 + i)y = 1 – 3i

    x – ix + y + iy = 1 – 3i

    Equating real and imaginary parts

    x + y = 1

    -x + y = -3

    Adding 2y = -2

    y = -1 and so x = 2


 

10. 
Find the real values of x and y for which the following equations are satisfied.
+ = i

  • Solution:
    + = i

    = i

    (3 + 2i – i2)x – 6i + 2i2 +(6 – 7i – 3i2)y + 3i + i2 = 10i

    (4 + 2i)x – 6i – 2 + (9 – 7i)y + 3i – 1 = 10i

    [x(4) + 9y] + i(2x – 7y) = 3 + 13i

    Equating real and imaginary parts

    4x + 9y = 3 4x + 9y = 3

    2(2x – 7y = 13) 4x - 14y = 26

                                    23y = -23

                                        y = -1

    Put y = -1 in 4x + 9y = 3 then x = 3

    x = 3, y = -1

  • x = -3i, y = -i

    x = -1, y = 3

    We take the square root of –8 – 6i as 1 – 3i and –1 + 3i.


 

11. 
Find the real values of x and y for which the following equations are satisfied.
= y(2 + i)

  • Solution:
    = y(2 + i)

    Equating real and imaginary parts

    = 2y
    = 4y2

    and x + 4 = y

    x2 + 3x + 8 = 4(x + 4)2

    x2 + 3x + 8 = 4(x2 + 8x + 16)

    x2 + 3x + 8 = 4x2 + 32x + 64

    3x2 + 29x + 56 = 0

    3x2 + 8x + 21x+ 56 = 0

    x(3x + 8) + 7(3x + 8) = 0

    (3x + 8) (x + 7) = 0

    x = - or –7

    When x = -

    y = 4 - = =

    When x = -7

    y = 4 – 7 = -3

    x = -, y = and x = -7, y = -3


 

12. 
For what values of x and y, the numbers –3 + ix2 y and x2 + y + 4i are complex conjugate of each other?

  • Solution:
    Given conjugate of x2 + y + 4i is x2 + y + 4i.

    But, conjugate of –3 + ix2y is –3 –ix2y.

    Hence, x2 + y = -3
    x2 + y = -3

    -x2y = 4
    x2y = -4

    Put x2 = t

    t + y = - 3 and ty = -4 or y = -
    t - = -3
    t2 – 4 = -3t

    (or) t2 + 3t – 4 = 0

    (t + 4) (t – 1) = 0

    t = -4 or t = 1

    y = 1 or y = -4

    Substituting y in x2 = t

    x2 = -4 or + 1 and y = 1 or –4

    x = 2i or + 1 and y = 1 or –4

x

2i

1

y

1

-4


 

13. 
If (1 + i) (1 + 2i) (1 + 3i)….(1 + ni) = x + iy. Show that 2.5.10….(1 + n2) = x2 + y2.

  • Solution:
    Given (1 + i) (1 + 2i) (1 + 3i) ……. (1 + ni) = (x + iy)

    Taking the modulus on each side


    ….. =

    Squaring both sides

    (2) (5) (10) ……(1 + n2) = (x2 + y2)


 

14. 
Find the square root of (-8, -6i).

  • Solution:
    Let = x + iy

    -8 – 6i = (x + iy)2 = x2 – y2 + 2ixy

    Equating real part and imaginary parts

    x2 – y2 = -8 and 2xy = -6 or xy = -3
    y = -
    Hence x2- = -8
    Put x2 = t, t-= -8

    t2 – 9 = -8t

    t2 + 8t – 9 = 0

    (t + 9) (t – 1) = 0

    t = 9 or t = 1

    Substituting x2 = t in x2 = -9

    x = 3i

    x2 = 1

    x = 1

    When x = 3i, y = i

    x = -3i, y = -i

    x = -1, y = 3

    We take the square root of –8 – 6i as 1 – 3i and –1 + 3i.


 

15. 
If z2 = (0, 1), find z.

  • Solution:
    z2 = (0, 1)

             = i

    Let z =

    Let = x + iy

    Squaring both sides i = x2 – y2 + 2i xy

    x2 – y2 = 0 or x = y and 2xy = 1

    2y2 = 1

        y =


    Hence z = or


 

16. 
Prove that the triangle formed by the points representing the complex numbers (10 + 8i), (-2 + 4i) and (-11 + 31i) on the Argand plane is right angled.

  • Solution:
    Let A, B, C represents the complex numbers 10 + 8i, -2 + 4i and (-11 + 31i) on the Argand diagram respectively.

    AB =

         = =

    BC =
         = = =

    CA =
         = = =

    CA2 = AB2 + BC2


    ABC is right angled.


 

17. 
Prove that the points representing the complex numbers (7 + 5i), (5 + 2i), (4 + 7i) and (2 + 4i) form parallelogram. (Plot the points and use midpoint formula).

  • Solution:
    Let A, B, C, D represent the complex numbers (7 + 5i), (5 + 2i), (4 + 7i) and (2 + 4i) in the Argand diagram respectively.

    (7 + 5i) (7, 5)

    (5 + 2i) (5, 2)

    (4 + 7i) (4, 7)

    (2 + 4i) (2, 4)

    The midpoint of AD is

    =

    The mid point of BC is

    =

    ABCD is a parallelogram.


 

18. 
Express the following complex numbers in polar form.2 + 2

  • Solution:
    2 + 2i = r(cos + i sin )

    r cos = 2
    r = = 4

    r sin = 2

    Hence cos = and sin = ; =

    2 + 2i = 4


 

19. 
Express the following complex numbers in polar form.–1 + i

  • Solution:
    –1 + i = r(cos + i sin )

    -1 = r cos

    = r sin

    r = == 2

    -1 = 2 cos
    cos = -

    = 2 sin
    sin =

    = - = 2
    Polar form of –1 + i is 2


 

20. 
Express the following complex numbers in polar form.–1 – i

  • Solution:
    Let –1 – i = r(cos - i sin )

    -1 = r cos

    r = =

      -1 = r sin

    Hence -1 = cos

    cos
    = -

    -1 = sin

    sin
    = -

    = - =
    Polar form of –1 – i is

21. 
Express the following complex numbers in polar form. 1 – i

  • Solution:


 

22. 
If arg(z - 1) = and arg (z +1) = 2, then prove that = 1.

  • Solution:
    arg(x + iy - 1) =
    tan-1 =

    = tan =

    x – 1 = y ……………………… (1)

    arg ( z + 1) =

    arg(x + iy + 1) =
    tan-1 =

    = tan = tan

    = -

    y = - ……………….. (2)

    -= y

    Multiply (1) and (2)

    - = y(y

    - = y2

    (x2 – 1) = y2

    x2 + y2 = 1

           z2 = 1

           = 1


 

23. 
P represents the variable complex number z. Find the locus of P, if Im = -2,

  • Solution:
    Im = -2

    Let z = x + iy

    Im = -2

    Im

    Im = -2

    Im = -2

    = -2

    2y – 2y2 – 2x2 – x = -2[1 – 2y + y2 + x2]

    2y – 2y2 – 2x2 – x = -2+ 4y - 2y2 - 2x2]

    -x - 2y = -2 x + 2y = 2


 

24. 
P represents the variable complex number z. Find the locus of P, if =

  • Solution:
    Let x = x + iy




    =

    Squaring both sides

    x2 + y2 – 10y + 25 = x2 + y2 + 10y + 25

    -20y = 0

    y = 0


 

25. 
P represents the variable complex number z. Find the locus of P, if Re = 1

  • Solution:
    Let z = x + iy

    Re= 1

    Re= 1

    Re= 1

    Re= 1

    = 1

    x2 + x + y2 + y = x2 + y2 + 2y + 1

    x – y = 1


 

26. 
P represents the variable complex number z. Find the locus of P, if  = 2

  • Solution:
    Let z = x + iy

    Re= 1

    Re= 1

    Re= 1

    Re= 1

    = 1

    x2 + x + y2 + y = x2 + y2 + 2y + 1

    x – y = 1


 

27. 
P represents the variable complex number z. Find the locus of P, if arg = -

  • Solution:
    arg =

    Let z = x + iy

    arg =

    arg =

    arg =

    arg =

    tan-1 =

    = tan

    =

    (x – 1) (x +3) + y2 = 0

    x2 + y2 + 2x - 3 = 0


 

28. 
Solve the equation x4 – 8x3 + 24x2 – 32x +20 = 0, if 3 + i is a root.

  • Solution:
    If 3 + i is a root then 3 – i is also a root.

    Sum of the roots = 6

    Product of the roots = 9 + 1 = 10

    The corresponding factor is x2 –6x + 10

    Hence x4 – 8x3 + 24x2 – 32x +20 = (x2 – 6x + 10) (x2 + px + 2)

    Equating the coefficient of x

    -32 = 10p – 12

    p = -2

    x2 – 2x + 2 = 0

    x = = = 1 i

    The roots are 3 i and 1 i.


 

29. 
Solve the equation x4 – 4x3 + 11x2 – 14x + 10 = 0, if one root is 1 + 2i.

  • Solution:
    If 1+ 2i is a root then 1 – 2i is also a root.

    Sum of the roots = 2

    Product of the roots = (1 + 2i) (1 – 2i) = 1 + 4 = 5

    The corresponding factor is x2 – 2x + 5

    Hence x4 – 4x3 + 11x2 –14x + 10 = (x2 – 2x + 5) (x2 + px + 2)

    Equating the coefficient of x

    -14 = -4 + 5p
    p = -2

    x2 – 2x + 2 = 0

    x = = = 1 i

    The roots are 1 2i and 1 i.


 

30. 
Solve: 6x4 – 25x3 + 32x3 + 3x – 10 = 0 given that one of the roots is 2 – i.

  • Solution:
    Since 2 – i is a root 2 + i is also a root.

    Sum of the roots = 4

    Product of the roots = 4 + 1 = 5

    The corresponding factor is x2 – 4x + 5

    Hence 6x4 – 25x3 + 32x2 + 3x – 10 = (x2 – 4x + 5) (6x2 + px – 2)

    Equating the coefficient of x.

    3 = 5p + 8
    p = -1

    6x2 – x – 2 = 0

    x = = = or -

    The roots are 2 i, - ,

31. 
Simplify:

  • Solution:
    =

                                                           = = =

                                                           = cos (-107 ) – i sin(-107 )


 

32. 
Simplify:

  • Solution:
    =

                               = = = since =

                               =

                               = cos (3 + 4 ) + isin(3 + 4 )


 

33. 
If cos + cos + cos = 0 = sin + sin + sin , prove that cos 3 + cos 3 + cos 3 = 3 cos( + + )

  • Solution:
    Given cos + cos + cos = 0

    sin + sin + sin = 0

    cos + cos + cos +i (sin + sin + cos ) = 0

    (cos + i sin ) + (cos + i sin ) + (cos + i sin ) = 0

    Let a = cos + i sin ; b = cos + i sin ; c = cos + i sin

    Then, a + b + c = 0

    We know that if a + b + c = 0, then a3 + b3 + c3 = 3 abc

    (cos + i sin )3 + (cos + i sin )3 + (cos + i sin )3

    = 3(cos + i sin ) (cos + i sin ) (cos + i sin )

    cos 3 + i sin 3 + cos 3 + i sin 3 + cos 3 + i sin 3

    = 3[cos( + + ) + i sin ( + + )]

    Equating real and imaginary parts, we have

    cos 3 + cos 3 + cos 3 = 3 cos( + + )

    and sin 3 + sin 3 + sin 3 = 3 sin ( + + )


 

34. 
If cos + cos + cos = 0 = sin + sin + sin , prove that sin 3 + sin 3 + sin 3 = 3 sin( + + )

  • Solution:
    Given cos + cos + cos = 0

    sin + sin + sin = 0

    cos + cos + cos +i (sin + sin + cos ) = 0

    (cos + i sin ) + (cos + i sin ) + (cos + i sin ) = 0

    Let a = cos + i sin ; b = cos + i sin ; c = cos + i sin

    Then, a + b + c = 0

    We know that if a + b + c = 0, then a3 + b3 + c3 = 3 abc

    (cos + i sin )3 + (cos + i sin )3 + (cos + i sin )3

    = 3(cos + i sin ) (cos + i sin ) (cos + i sin )

    cos 3 + i sin 3 + cos 3 + i sin 3 + cos 3 + i sin 3

    = 3[cos( + + ) + i sin ( + + )]

    Equating real and imaginary parts, we have

    cos 3 + cos 3 + cos 3 = 3 cos( + + )

    and sin 3 + sin 3 + sin 3 = 3 sin ( + + )


 

35. 
If cos + cos + cos = 0 = sin + sin + sin , prove that cos 2 + cos 2 + cos 2 = 0

  • Solution:
    a = cos + i sin
    = cos - i sin
    b = cos + i sin
    = cos - i sin
    c = cos + i sin
    = cos - i sin

    Hence

    ++ = (cos + cos + cos ) – i(sin + sin + sin )

                   = 0

    And so = 0 ab + bc + ca = 0

    Consider (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

    0 = a2 + b2 + c2 + 2(ab + bc + ca)

    0 = a2 + b2 + c2 + 0

    a2 + b2 + c2 = 0

    (cos + isin )2 +(cos + i sin )2 + (cos + i sin )2 = 0

    cos 2 + isin 2 + cos 2 + i sin 2 + cos 2 + i sin 2 = 0

    Equating real and imaginary parts, we get

    cos 2 + cos 2 + cos 2 = 0

    sin 2 + 2 sin 2 + sin 2 = 0


 

36. 
If cos + cos + cos = 0 = sin + sin + sin , prove that sin 2 + sin 2 + sin 2 = 0

  • Solution:
    a = cos + i sin
    = cos - i sin

    b = cos + i sin
    = cos - i sin

    c = cos + i sin
    = cos - i sin

    Hence

    ++ = (cos + cos + cos ) – i(sin + sin + sin )

                   = 0

    And so = 0 ab + bc + ca = 0

    Consider (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

                                   0 = a2 + b2 + c2 + 2(ab + bc + ca)

                                   0 = a2 + b2 + c2 + 0

    a2 + b2 + c2 = 0

    (cos + isin )2 +(cos + i sin )2 + (cos + i sin )2 = 0

    cos 2 + isin 2 + cos 2 + i sin 2 + cos 2 + i sin 2 = 0

    Equating real and imaginary parts, we get

    cos 2 + cos 2 + cos 2 = 0

    sin 2 + 2 sin 2 + sin 2 = 0


 

37. 
If cos + cos + cos = 0 = sin + sin + sin , prove that cos2
+ cos2
+ cos2
= sin2
+ sin2

+ sin2

=

  • Solution:
    cos2
    + cos2

    + cos2


    =

    =

    But cos 2 + cos2 + cos2 = 0

    Hence cos2
    + cos2

    + cos2

    =

    and in the same way

    sin2
    + sin2

    + sin2

    = 1 - cos2

    + 1- cos2

    + 1 - cos2


                                    = 3 – (cos2 + cos2 + cos2
    )

                                    = 3 - =


 

38. 
Prove that (1 + i)n + (1 - i)n =

  • Solution:
    Let 1 + i = r(cos + i sin )

    r = =

    cos = ; sin =

    =

    1 + i =

    Replace 'i' by –i

    1 – i =

    Now, (1 + i)n + (1 – i)n

    = +

    = 2

    = 2 = 2.2n/2 cos = 2 cos


 

39. 
Prove that (1 + + (1 - = 2n+1cos deduce the value when n = 9

  • Solution:
    First express 1 + iand 1 - iin the modulus and amplitude form.

    Let 1 + i= r(cos + i sin ). Equating real and imaginary parts, we get

    r cos = 1

    r sin = r = = 2

    sin =

            
    =

    1 + = 2

    Let 1 - i = r (cos + i sin )

    r cos = 1

    r sin = -

    r = = 2

    cos =

    sin =
    = -

    1 -i =

    L.H.S. = (1 -i)n + (1 - i)n

              = 2n

              = 2n
                
    = 2n. 2 cos
              = 2n+1 cos
              
              = R.H.S

    When n = 9, we get

    = 29+1 cos

                                = 210 cos 3 = 210(-1) = -1024


 

40. 
Prove that (1 + cos + i sin )n + (1 + cos - isin )n = 2n+1 cosn cos

  • Solution:
    L.H.S. = (1 + cos + isin )n + (1 + cos - isin  

                  =

                  = 2ncosn

                  = 2ncosn

                  = 2ncosn2

                 = 2n+1cosn = R.H.S.

41. 
Prove that (1 + i)4n and (1 + i)4n + 2 are real and imaginary respectively.

  • Solution:
    (1 + i)4n =

                      = [cos n + i sin n ] = 22n cos n           Since sin n = 0

                      = purely real

    (1 + i)4n+2 =

                     =

                     =

                     = 22n+1 cos n = purely imaginary


 

42. 
If and are the roots of the equation x2 – 2px +(p2 + q2) = 0 and tan = show that = qn-1 .

  • Solution:
    x2 – 2px + (p2 + q2) = 0

    Let and be the roots of the equation

    Then + = 2p


    = p2 + q2

    Also =

              = p iq


    = p +iq and

    = p - iq

    And - = 2 iq ………….. (1)

    Consider, =

                                            = ………(2)

    Let y + p = r cos

    q = r sin

    tan =

    (y + p + iq)n = (r cos + r i sin )n

                        = rn[cos + i sin ]n

                        = rn[cosn + i sin n ]

    Similarly, [(y + p)- iq]n = rn[cosn - i sin n ]

    Hence substitute in (2),

    = …….(3)

    Now, r2 = r2 cos2
    + r2 sin2
    = (y + p)2+ q2


    = [(y + p)2 + q2]n/2 = qn

                                          = qn [cot2
    +1]n/2

                                          = qn (cosec2
    )n/2 =

    Substitute in (3)

    = .

                            = qn-1


 

43. 
If x + = 2 cos prove that  xn + = 2cos

  • Solution:
    x + = 2 cos

    x2 – 2x cos + 1 = 0

    x =

    = cos + i sin

    i.e., x = cos + i sin

    = cos - i sin

    and so x + = 2 cos which is given.

    Therefore xn = (cos + i sin )n

    xn = cosn + i sinn

    = cos n - i sin n

    xn + = 2cos n

    and xn - = 2isin n


 

44. 
If x + = 2 cos prove that xn - - 2i sin n

  • Solution:
    x + = 2 cos

    x2 – 2x cos + 1 = 0

    x =

    = cos + i sin

    i.e., x = cos + i sin

    = cos - i sin

    and so x + = 2 cos which is given.

    Therefore xn = (cos + i sin )n

    xn = cosn + i sinn

    = cos n - i sin n

    xn + = 2cos n

    and xn - = 2isin n


 

45. 
If x + = 2 cos and y + = 2cos , show that = 2 cos(m - n )

  • Solution:
    x + = 2 cos

    x = cos
    + i sin

    Similarly y + = 2cos

    y = cos
    + i sin

    Now, = = =

                   = = cos(m - n ) + i sin(m - n )

    Hence = cos(n - m ) + i sin(n - m ) = + cos(m - n ) – i sin (m - n )

    Therefore = 2cos(m - n )

    and = 2isin(m - n )


 

46. 
If x + = 2 cos and y + = 2cos , show that = 2isin(m - n )

  • Solution:
    x + = 2 cos

    x = cos
    + i sin

    Similarly y + = 2cos

    y = cos
    + i sin

    Now, = = =

                   = = cos(m - n ) + i sin(m - n )

    Hence = cos(n - m ) + i sin(n - m ) = + cos(m - n ) – i sin (m - n )

    Therefore = 2cos(m - n )

    and = 2isin(m - n )


 

47. 
If x = cos + i sin ; y = cos - i sin prove that
xm yn + = 2 cos(m
+ n )

  • Solution:
    Let x = cos + i sin

    Then, = cos - i sin

    y = cos + i sin

    = cos - i sin

    x + = 2 cos

    y + = 2 cos

    x = cos + i sin

    y = cos + i sin

    xm = (cos + i sin )m = cos m + i sin m

    yn = (cos + i sin )n = cos n + i sin n


    =

          = cos(m - n ) + i sin(m - n )

    = cos(m - n ) – i sin(m - n )

    Adding

    = 2 cos(m - n )

    One of the values: 2 cos(m - n )


 

48. 
If a = cos2 + i sin 2 , b = cos 2 + i sin 2 and c = cos 2 + i sin 2 prove that
= 2 cos(
+ + )

  • Solution:
    abc = (cos 2 i + sin 2 ) (cos 2 + i sin 2 ) (cos 2 + i sin 2 )

          = cos 2( + + ) + i sin 2( + + )

    = [cos 2( + + ) + i sin 2( + + )]1/2

             = cos ( + + ) + i sin ( + + )

    = [cos ( + + ) + i sin( + + )]-1


             = cos(
    + + ) – i sin( + + )

    + = 2 cos( + + )


 

49. 
If a = cos2 + i sin 2 , b = cos 2 + i sin 2 and c = cos 2 + i sin 2 prove that
= 2 cos 2(
+ - )

  • Solution:
    =

    =

          = cos 2( + - ) + i sin 2( + - )

    = = cos 2( + - ) – i sin 2( + - )

    = 2 cos 2( + - )

    i.e. = 2 cos 2( + - )


 

50. 
Find all the values of the following: i1/3

  • Solution:
    i1/3 = since i =

           =

           = cos k = 0 , 1 ,2

    The values are cos + i sin.cos+ i sin, cos

51. 
Find all the values of the following:(8i)1/3

  • Solution:
    (8i)1/3 = (8)1/3 (i)1/3

               = 2 (i)1/3

    The different values are 2 and


 

52. 
Find all the values of the following:(-.

  • Solution:
    (-

    Let -- i = r(cos + i sin )

    - = r cos
    r = = 2

    -1 = r sin

    
    cos = - = - += -

    sin = -

    (- - i ) = 2

    (- - i )2/3 = 22/3

                       = (

                       = (

                       = 21/3

                      = 21/3

    The values are 21/3

    21/3

    and 21/3


 

53. 
If x = a + b, y = a + b
2, z = a

2 + b
show that xyz = a3 + b3

  • Solution:
    x = a + b

    y = a + b
    2

    z = a
    2 + b


    where is the complex cube root of unity.

    That is, 1 + +
    2 = 0 and

    3 = 1

    xyz = (a + b) (a
    + b
    2) (a

    2 + b
    )

           = (a2
    + ab
    + ab
    2 + b2
    2 ) (a
    2 + b
    )

           = a3 3 + a2b
    3+ a2b

    4 + ab2
    4+ a2b
    2 + ab2
    2 + ab2 3 + b3 3

           = a3 + a2b(1 + +
    2) + ab2(
    +
    2 + 1) + b3

           = a3 + b3


 

54. 
If x = a + b, y = a + b
2, z = a

2 + b
show that x3 + y3 + z3 = 3(a3+b3) where is the complex cube root of unity.

  • Solution:
    x3 + y3 + z3 = 3(a3 + b3)

    Consider x + y + z = a + b + a + b
    2 + a

    2 + b


                                 = a(1 + +
    2) + b(1 +
    +
    2)

                                 = 0 + 0 = 0

    If (x + y + z) = 0 then x3 + y3 + z3 = 3 xyz

    Hence x3 + y3 + z3 = 3(a2 + b2) from previous problem.


 

55. 
Prove that if
3 = 1, then (a + b + c)(a + b
+ c
2)(a + b

2 + c
) = a3 + b3 + c3 – 3abc

  • Solution:
    LHS = (a + b + c)(a + b + c
    2)(a + b

    2 + c
    )

               = (a2 + ab + ac + ab + b2
    + bc
    + ac
    2 + bc

    2 + c2
    2) (a + b
    2 + c
    )

               = [a2 + ab(1 + ) + ac(1 +
    2) + b2

    + bc(
    +
    2) + c2
    2][a + b
    2 + c
    ]

               = (a2 - ab
    2 - ac
    + b2
    - bc + c2
    2](a + b
    2 + c
    )

               = a3 - a2b

    2 – a2c
    + ab2
    - abc + ac2
    2 + a2b
    2 – ab2
    4 - abc
    3 + b3
    3- b2 c
    2 + bc2
    4 + a2 c - abc
    3 – ac2
    2 + b2c
    2 - bc2

    + c3
    3

               = a3 + b3 + c3 – 3abc = R.H.S


 

56. 
Prove that if
3 = 1, then = -1

  • Solution:
    = and =
    2

    LHS =
    5 + (

    2)5

                 
    =

    5 +

    10

              =
    2.

    3 +

    3.

    3.

    3.


              =
    2+
    = -1

              = R.H.S. (since 1 +
    +
    2 = 0)


 

57. 
Prove that if
3 = 1, then


  • Solution:
    LHS = -+

               =

               =

               =

               = = 0 = R.H.S


 

58. 
Solve:  x4 + 4 = 0

  • Solution:
    x4 + 4 = 0

    x4 = - 4 = 4(-1) = 4(cos + isin )

    x = 41/4[ cos + i sin ]1/4

          = (22)1/4 [cos (2k + ) + i sin(2k + )]1/4

          = , k = 0,1,2,3

    The values are





 

59. 
Solve:  x4 – x3 + x2 – x + 1 = 0

  • Solution:
    x4 – x3 + x2 - x + 1 = 0

    = 0

    Hence x5 = -1 = cos + i sin

    x = [cos(2k + ) + i sin(2k + )]1/5

          = cos , k = 0, 1, 3, 4

    The values are cos

    cos
    cos
    cos
    [because x = -1 = cos , does not satisfy …………….(1)


 

60. 
Solve:x9 + x5 – x4 – 1 = 0

  • Solution:
    x9 + x5 – x4 – 1 = 0

    x5 (x4+ 1) – (x4 + 1) = 0

    (x4+ 1) (x5- 1) = 0

    x4 + 1 = 0

    x = (-1)1/4

      
    = (cos
    + isin )1/4

      = [cos(2k
    + ) + isin(2k + )]1/4

      = cos

    k = 0,1,2,3

    x5- 1 = 0

    x = (1)1/5 = (cos 0 – i sin 0)1/5

                    = (cos 2k
    + i sin 2k )1/5

                    = cos where k = 0,1,2,3,4

    The values are cos ,,, ,

    , ,

61. 
Find all the values of and hence prove that the product of the values is l.

  • Solution:
    Let -i = r(cos + i sin )

                 = r cos

     r = = 1

    - = r sin

    Hence cos =

    sin = -
    = -

    -i = cos

                   =
                  =

                  =

                  = [cos(- ) + i sin ( )]1/4

                  = [cos(2k - ) + i sin(2k - )]1/4

                  = cos

    where k = 0,1,2,3

    The values are cos

    cos

    cos

    cos


 

62. 
Write the following as complex numbers

(i) (ii) 3-.

  • Solution:
    (i) = . = i

    (ii) 3-= 3- = 3- = 3-i.


 

63. 
Write the real and imaginary parts of the following numbers:

(i) 4-i (ii).

  • Solution:
    Let z =4-i ; Re(z) = 4, Im(z) = -

    Let z = ; Re(z) = 0, Im(z) = .


 

64. 
Find the complex conjugate of (i) 2+i, (ii) -4-i9 (iii)

  • Solution:
    By definition , the complex conjugate is obtained by reversing the sign of the imaginary part of the complex number. Hence the required conjugate are (i) 2-i, (ii) -4+i9 and (iii) ( the conjugate of any real number is itself).


 

65. 
Express the following in the standard form of a + ib

(i) (3+2i) + (-7-i) 

(ii) (8-6i)-(2i-7)

(iii) (2-3i)(4+2i) 

(iv) .

  • Solution:
    (3+2i)+(-7-i)=3+2i-7-i=-4+i

    (8-6i)-(2i-7)=8-6i-2i+7=15-8i

    (2-3i)(4+2i)=8+4i-12i-6i =14-8i


    Note : i

    i

    i

    (i)4n= 1

    (i)4n-1 = -i

    (i).


 

66. 
Find the real and imaginary parts of the complex number

Z=.

  • Solution:
    z=

                       =

                       =

                       =

                       =

                       =

    Re(z) = - and Im(z) =-.


 

67. 
If z1 = 2+i, z = 3-2i and z= and find the conjugate of zz.

  • Solution:
    Conjugate of zz is

    i.e.,

                        = (2-i) (3+2i)

                        = (2-i) (3+2i)

                        = 6+4i-3i-2i=6+4i-3i+2
                        = 8+i.


 

68. 
If z1 = 2+i, z = 3-2i and z= and find the conjugate of (z).

  • Solution:
    = ()=

                        =

                        =.


 

69. 
Find the modulus of the following complex numbers:

(i) -2+4i (ii) 2-3i (iii)-3-2i (iv) 4+3i.

  • Solution:
    (i)

    (ii)

    (iii)

    (iv) .


 

70. 
Find the modulus or the absolute value of .

  • Solution:

                       =

71. 
Find the modulus and argument of the following complex numbers.

- .

  • Solution:
    Let -)

    Equating the real and imaginary parts separately

    rcos

    r

    sin,r

    r

    r=

    cos, sin quadrant


    modulus r =2, arguments

    Hence -.


 

72. 
Find the modulus and argument of the following complex numbers 1+i.

  • Solution:
    Let 1+i

    Equating the real and imaginary parts separately

    rcos rsin

    =1 , r

    r

    cos

    sin, in the 1 quadrant


    modulus r =2, argument =

    Hence 1 +i.


 

73. 
Find the modulus and argument of the following complex numbers -1-i.

  • Solution:
    Let -1-i

    Equating the real and imaginary parts separately

    rcos=-1

    r=1

    rsin

    r

    r(cos)=4

    r=2

    cos= -,sin=- in the 3rd quadrant


    modulus r=2, argument =

    Hence -1-i.


 

74. 
If (a+ib1)(a + ib)…..(a+ ib) = A + iB

Prove That (i) (a+b)(a+b)……(a+b)=A+B

(ii) tan+tan+……..tan=k+tan,kZ.

  • Solution:
    Given (a+ib)(a+ib)……(a+ib)=A+iB




    squaring on both sides

    (a+b)(a

    also

    arg[(a+ib)(a+ib) ……..(a+ib)] =arg(A+iB)

    arg (a+ib) + arg(a+ib) ………+arg(a+ib)=arg(A+iB) ……..(1)

    Now arg (a+ib)=tan
    Hence (1) becomes

    tantan+……….+tan=tan
    By taking the general value.

    tan.


 

75. 
P represents the variable complex number z, find the locus of P if

Re.

  • Solution:
    Let z = x + iy Then


    Given that Re


    x+y

    x - y = 1 which is a straight line.

    The locus of P is a straight line.


 

76. 
P represents the variable complex number z, find the locus of P if arg.

  • Solution:
    arg

    arg(z-1)-arg(z+1) =

    arg(x+iy-1)-arg(x+iy+1)=

    arg[(x-1)+iy]-arg[(x+1)+iy] =

    tan

    tan


    is the required locus.


 

77. 
Graphically prove that .

  • Solution:

    By triangle inequality in

    ……..(1)

    By triangle inequality in

    from (1)

    .


 

78. 
Prove that the complex numbers 3+3i, -3-3i,-3I are the vertices of an equilateral triangle in the complex plane.

  • Solution:

    Let A,B and C represent the complex numbers (3 + 3i),(-3-3i) and

    (-3in the argand diagram.

    AB =

    =

    BC =

    =

    CA =

    =

    AB=BC=CA

    is an equilateral triangle.


 

79. 
Prove that the points representing the complex numbers 2i, 1+ i ,4 + 4i and 3 + 5i on the Argand plane are the vertices of a rectangle.

  • Solution:
    Let A, B, C and D represents the complex number 2i,(1+i),(4+4i) and (3+5i) in the argand diagram respectively.

    Fig3.14

    AB =

    = =

    BC =

    =

    =

    CD =

    =

    DA =

    AB=CD and BC=DA

    AC =

    =

    =

    AB

    AC

    Hence AB

    As pairs of opposites sides are equal and =90 ABCD is a rectangle.


 

80. 
Show that the points representing the complex numbers 7 + 9i, -3 + 7i, 3 + 3i form a right angled triangle on the argand diagram.

  • Solution:

    Let A, B and C represents the complex numbers

    7+9i, -3+7i and 3+3i in the Argand diagram respectively.

    AB =

    =

    =

    BC=

    =

    =

    CA =

    =

    =

    AB

    =90

    Hence is a right angled isosceles triangle.

81. 
Find the square root of (-7 + 24i).

  • Solution:
    Let

    On squaring,

    -7+24i = (x)+2ixy

    Equating the real and imaginary parts

    x and 2xy=24

    x

    =

    Solving, x and x

    We get x and y=16

    x = 3 and y = 4

    Since xy is positive, x and y have the same sign.

    (x = 3, y = 4) or (x = -3, y = -4)

    = (3 + 4i) or (-3 - 4i).


 

82. 
Solve the equation x - 4x, if one of its roots is 2+i.

  • Solution:
    Since 2 + i is a root, 2 - i is also a root.

    Sum of the roots = 4

    Product of the roots (2+i)(2-i) =4+3=7

    The corresponding factor is x

    x

    Equating x term, we get 8 = 7p-20

    Other factor is (x

    x

    Thus the roots are 2 and -2i.


 

83. 
Simplify:.

  • Solution:
    The given expression =

    =

    =e

    =e

    Alternative method:

    The given expression =

    = (cos

    =(cos

    =cos 31.


 

84. 
Simplify: .

  • Solution:

    = cos

    = cos

    = cos

    = cos

    =sin9

    Alternative method:


    = -i(cos4

    = -i[cos9

    = sin9

    Result : .


 

85. 
If n is a positive integer, prove that

.

  • Solution:
    Let z=sin

    
    

    =

    = .


 

86. 
If n is a positive integers, prove that .

  • Solution:
    Let

    Equating real and imaginary parts separately , we have

    r cos and r sin =1

    r=

    cos

    Hence (

    (

    = 2 ………..(1)

    To determine we replace I in the above result by –I we get


    ( …………….(2)

    Adding (1) and (2) we have

    (

    = 2.


 

87. 
If and are the roots of x
and cot show that .

  • Solution:
    The roots of the equation x are 1 i.

    Let and

    Then (y+)

    = (cot)

    =

    =

    (y+ =

    (y+)-(y+)=

    further


    .


 

88. 
Solve the equation
x.

  • Solution:
    x

    = (x(x=0

    = x

    x = (1)

    x = (1)

    = (cos 2k

    os

    (-1)

    ={cos (2k+1)}

    =cos

    Thus we have 9 roots.


 

89. 
Solve the equation x.

  • Solution:
    x

    x

    x =(-1)

    = (cos)

    i.e., = [cos(2k

    =

    (ii) x

    = (cos

    = [cos(2k

    = cos (2k +1).


 

90. 
Find all the values of ().

  • Solution:
    Let

    rcos

    r =

    cos

    (

    =2

    = 2

    = 2

    = 2 where k =0, 1, 2.